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Abstract

The recent trends and advancements in the field of artificial intelligence and autonomous

systems has motivated us to work on a similar project of our own. The project required much

considerations and effort in both hardware and software aspect due to which this project is

separated into first half and second half. The first half deals with the physical system of

the vehicle which involves all the hardware and the control system for those hardware. The

second half primarily focuses on the implementation of autonomy, i.e. computer vision and

model training.

This half of the project involves building a system that integrates all the sensors and

actuators along with processing units to provide a platform for the model to control the

vehicle. The physical system uses a stereo camera to observe the surrounding and also uses

other sensors which communicates to the core system and each other using the CAN bus

protocol. The vehicle is a large model capable of driving a single person which also utilizes

a hardwired switch to take over the controls to manual mode in case of emergency.
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1. INTRODUCTION

1.1 Background

The recent trend in robotics has encouraged a class of vehicles which are autonomous and

controllable to an extent by the user. Such intelligent system are able to identify their

surroundings and react to different conditions that can occur in the surrounding when they

are assigned to a task. These class of vehicle need a robust, reliable and highly reactive

system to control them. Such systems are capable of processing loads of data in real time

and adjusting to the required state in real time which requires a sophisticated set of devices

within the system. Currently these systems are not that easy to find and are based on

proprietary solutions. In context of Nepal, the vehicle industry has not taken off, there has

not been any significant efforts in this industry to make it happen either. The environment

is not predictive and previously employed and tuned controlled system may not be able to

adapt to changing conditions. With advancement in edge AI it has allowed the device to

compute sophisticated task real time on device which are up to the task of computing the

changing environment around them. These mobile autonomous vehicle are able to explore

and perform tasks that are not possible for normal human being.

1.2 Problem Statements

The problem statements we tackle for our half of the two-team collaboration are as follows:

• Can the system adapt to changes in the environment around it?

• How can we develop multiple feedback loops within a network?

• How can the system be reliable as to work on its own?

• Does the interface encounter all the exceptions and errors that can occur?

• Can we change the response of the system on demand?

These questions are integral to the challenge of building this project. The first two question

relate on how we should implement the system and the third part reflects on what consid-

eration needs to be taken while building such systems. The last two questions are based on

how the communication system should react based on the input to the system.
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1.3 Objectives

1.3.1 Collaboration Objectives

The collaboration objectives state the goals of the two-team collaboration, covering the entire

project including the hardware, electronics, control systems and software. The can be stated

as follows:

• To build an autonomous vehicle capable of driving a passive passenger from one location

to another given the locations.

• To have the vehicle deal with obstacles, stay on route, and make decisions about

changing routes both on a small and large scale in order to cause least damage to itself

and discomfort to the passenger.

• To create a modular, layered and abstracted system that on principle opens possibilities

of the modules’ usage in a much wider variety of applications in the field of robotics

and AI agents.

Further specifics from this point on can be found in the respective project objective

sections for either half of the collaboration.

1.3.2 Objectives of This Project

An autonomous system includes a network of devices working in conjunction to achieve a

system level goal.

1. System level design of every system nodes

2. Controller Area Network (CAN) protocol design and communication standard

3. Implementing on device Machine Learning (ML) on micro-controller and embedded

systems

4. Establish a defined error reporting and error handling sequences

5. Higher Level abstracting command and hierarchy of command signals

6. Building a vehicle that can accommodate all the components of the system

7. Takeover constraints to discard the higher level automation commands

8. Tuning the system to different reactive circumstances

2



1.4 Scope

1.4.1 Collaboration Scope

The collective scope of the entire project refers to both the problem statements and the

objectives to define the coverage and limits set for our goals in order to make the project

well defined and achievable. They can be stated as follows:

• Regarding the transportation of a passenger from one location to another

– The number of passengers will be limited to one

– The area for which the locations may be defined will be confined within Pulchowk

Campus

– Obstacles will be within the context of the campus (hence, some common elements

present in the usual context of vehicles may not be considered, such as traffic

lights)

– The speed off the vehicle will be limited to 20 km per hour

• Regarding layering and modularity

– The number of layers and modules will be kept low to accommodate the workflow

for our small team and low resources

1.4.2 Scope of This Project

For this half of the two-team collaboration, the following scope will be considered:

• Regarding the capabilities of the system

– The system will have knowledge about localization and layout of campus

– The system will be able to cope up with failure in any part of the system

– User can override the control of the system

– All the sub systems are isolated and have specific contracts with each other

– The system will be based on deadline and use Real Time Operating System

(RTOS)

• Regarding the information provided by the AI agent

– Defined commands will be provide to a middleware

– Middleware translates those information to required data packets

3



2. Literature Review

The autonomous vehicle was once thought of as a dream but it is closer and closer to

become a reality. The consequences of vehicle automation are already being outlined on

global mobility, on traffic efficiency, on competitiveness, etc [1]. This requires advances

in many aspects of vehicle autonomy, ranging from vehicle design to control, perception,

planning, coordination, and human interaction. Autonomous vehicles, which operates in

complex dynamic environments, require methods that generalize to unpredictable situations

and reason in a timely manner in order to reach human-level reliability and react safely even

in complex urban situations [2].

The SAE International (Society of Automotive Engineers) has define various levels of

autonomy ranging from level 0 up to level 5. The daily utility vehicles belongs to level 0

and vehicles where no human interaction is required belongs to level 5. Level 5 automation

is yet to be achieved due to limitations in understanding and decision making. Continuous

industry and academic effort can facilitate the achievement of level 5 automation system in

the near future [3].

Overview of Autonomous Vehicle Technology

Autonomous vehicle technology combines sensors, perception algorithms and advanced con-

trol systems to enable vehicles to navigate and make decisions without human intervention.

With the integration of artificial intelligence and mapping technologies, these vehicles can

perceive their environment, plan routes and execute actions with precision. Safety features

and redundant measures ensure reliable and secure autonomous operations.

• Sensor Integration: Autonomous vehicles utilize a range of sensors, such as cameras,

LIDAR, RADAR, and ultrasonic sensors, to gather comprehensive data about their

surroundings.

• Perception Algorithms: Cutting-edge perception algorithms process sensor data to

understand the environment and identify objects. For instance, computer vision and

machine learning techniques are employed to classify pedestrians and detect obstacles.

• Advanced Control Systems: Autonomous vehicles employ sophisticated control

systems to execute actions in real-time. These systems integrate sensor data and

vehicle dynamics to make decisions such as acceleration, braking, steering, and lane

4



changes. Examples include adaptive cruise control, lane-keeping assist, and collision

avoidance.

• Artificial Intelligence (AI): AI plays a crucial role in autonomous vehicle technology,

allowing vehicles to learn from data and improve performance. Machine learning and

deep learning algorithms enable tasks such as object recognition, behavior prediction,

path planning, and decision-making in complex environments.

• Mapping and Localization : High-definition mapping and precise localization are

essential for autonomous navigation. Mapping involves creating detailed maps of the

environment, while localization techniques like GPS and SLAM algorithms help vehi-

cles determine their position accurately.

• Safety Features : Autonomous vehicles prioritize safety and safety features like au-

tomatic emergency braking and blind-spot detection provide additional protection for

passengers and pedestrians.

Node-to-Node Communication Protocol

The Controller Area Network (CAN) has become the standard communication protocol in

autonomous node-based systems. It facilitates reliable and efficient data exchange between

electronic control units (ECUs), enabling seamless coordination among subsystems. CAN’s

widespread adoption has made it a key component in the development of advanced au-

tonomous capabilities.

Before the widespread adoption of the CAN, several communication protocol advances

shaped the automotive industry. Serial Communications Interface Serial Communications In-

terface (SCI) provided a simple asynchronous serial communication interface, while Local In-

terconnect Network (LIN) offered a cost-effective alternative for less critical systems. Media

Oriented Systems Transport (MOST) focused on high-speed multimedia and infotainment

communication, utilizing fiber optics. Inter Integrated Circuit (I2C) facilitated short-range

communication within electronic systems, and SAE J1850 served diagnostic and data com-

munication purposes. Although these protocols were not as prevalent as CAN, they paved

the way for advancements in automotive communication, contributing to the evolution of

more sophisticated and standardized protocols.

Recent achievements in the CAN protocol include the introduction of CAN FD, en-

abling higher data rates and larger payload sizes for faster and more efficient communica-

tion. Enhanced security features, such as Secure CAN (CANcrypt), have been developed

to ensure authentication and data integrity within CAN-based systems. Integration with

5



Time-Sensitive Networking (TSN) enables real-time and synchronized communication, while

integration with Automotive Ethernet enhances compatibility with modern vehicle archi-

tectures. Additionally, improvements in fault tolerance and robustness have bolstered the

reliability and resilience of CAN-based systems.

Practical Challenges

Advancements in vehicle technology and traffic administration have led to a decrease in road

deaths in developed countries, while developing countries like India are experiencing the

opposite trend. Globally, the number of traffic-related deaths remains high. Autonomous

driving can significantly reduce accidents, with a high penetration rate of fully autonomous

vehicles and effective traffic management strategies being crucial. However, the increase in

vehicle-kilometers traveled may offset the decrease in accidents. Other risks include passenger

overconfidence and reckless pedestrian behavior.

2.1 Related work

Robotics and Artificial Intelligence Laboratory researchers at the Tongji University of China

have published an article on the architecture design and implementation of autonomous

vehicle [4]. The article discussed a practical framework of hardware and software. It describes

three typical sensor plans and introduces a general autopilot for the vehicle. The final report

contains autonomous driving test implemented using the proposed architecture.

2.2 Related theory

2.2.1 Stereo vision

Stereo vision, also known as stereo vision or binocular vision, is a technique used in computer

vision and robotics to extract depth information from a pair of images captured by two

cameras, commonly referred to as a stereo vision camera setup. The basic principle behind

stereo vision is triangulation, which involves using the displacement or disparity between

corresponding points in the two images to estimate the depth or distance of objects in the

scene. The stereo vision processing pipeline is as follows:

• Stereo vision Camera Setup: Two cameras are positioned horizontally or slightly

diverged from each other, mimicking the separation of human eyes. These cameras

capture two slightly different views of the same scene simultaneously.

• Image Acquisition: Both cameras capture the scene, resulting in a pair of images

called the left image and the right image. These images represent the scene from two

different viewpoints.

6



• Correspondence Matching: Correspondence matching is performed to find corre-

sponding pixels or features in the left and right images. This process involves comparing

the intensity or feature descriptors of pixels in one image with the corresponding pixels

in the other image.

• Disparity Calculation: Once the corresponding pixels are identified, the disparity or

the horizontal displacement between the pixels in the left and right images is calculated.

Disparity represents the apparent shift of an object between the two views due to the

cameras’ baseline separation.

• Triangulation: Using the disparity information and known camera parameters (such

as the baseline distance and focal length), triangulation is performed to estimate the

depth or 3D coordinates of the scene points. Triangulation involves finding the inter-

section point of two rays originating from the camera centers and passing through the

corresponding image points.

• Depth Map Generation: By applying triangulation to all the corresponding points

in the stereo image pair, a depth map or a disparity map is created. The depth map

represents the scene’s 3D structure, where each pixel corresponds to the estimated

distance or depth of the corresponding object point in the scene.

• 3D Reconstruction and Applications: With the depth map or the 3D information,

it becomes possible to reconstruct the scene in three dimensions. This information can

be used for various applications such as object detection, tracking, obstacle avoidance,

3D mapping, and robot navigation.

The accuracy of stereovision-based depth estimation depends on factors like camera cal-

ibration, image rectification, the quality of correspondence matching, and the baseline dis-

tance between the cameras. Disparity maps can provide valuable information about the

scene’s depth structure and help in perceiving the 3D environment, enabling more advanced

and precise analysis in computer vision and robotics applications.

2.2.2 CAN frames

A CAN frame consists of several fields that together form the message being transmitted

or received. The most common type of CAN frame is the Standard Frame, which has the

following components:

• Start-of-frame (SOF): This is a single dominant (logic 0) bit indicating the begin-

ning of a CAN frame.

7



Figure 2.1: Standard CAN Frame Layout

• Arbitration field: It contains the identifier or message priority, which is used for

determining message precedence when multiple nodes attempt to transmit simultane-

ously. The arbitration field consists of the identifier (11 bits for standard CAN) and

the Remote Transmission Request (RTR) bit.

• Control field: This field includes bits for specifying the frame type, such as data

frame or remote frame, as well as additional control information.

• Data field: This field carries the actual data being transmitted, ranging from 0 to 8

bytes in length. The data field is optional for remote frames.

• Cyclic Redundancy Check (CRC): It is a 15-bit or 17-bit field used for error

detection. The transmitting node calculates the CRC based on the data and appends

it to the frame, while the receiving node performs the same calculation to verify the

integrity of the received data.

• Acknowledge field: It consists of an acknowledge delimiter and an acknowledge slot.

The acknowledge field serves to acknowledge successful receipt of a frame by other

nodes.

• End-of-frame (EOF): A sequence of seven recessive (logic 1) bits that mark the end

of the frame.

CAN frames can be transmitted either in a ”broadcast” mode, where all nodes on the bus

receive the frame, or in a ”point-to-point” mode, where the frame is specifically addressed

to a single node.

In addition to the Standard Frame, there is also an Extended Frame format that allows

for longer identifiers (29 bits) and more data payload (up to 64 bytes).
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CAN frames enable reliable and efficient communication between various electronic con-

trol units within a system, facilitating tasks such as sensor data exchange, control signal

transmission, and fault diagnosis.

2.2.3 SLAM

Simultaneous Localization and Mapping (SLAM) is a technique used by robots to build a

map of an unknown environment while simultaneously estimating their own position within

that map. The main goal of SLAM is to allow a robot to navigate autonomously in an

unknown environment by constructing a map of the surroundings and estimating its own

pose (position and orientation) relative to that map. This process involves several key steps:

• Data Acquisition: Robots collect sensor data from range sensors like lidar or depth

cameras.

• Feature Extraction: Distinctive features are extracted from the sensor data.

• Data Association: Features are matched across frames to establish correspondences.

• Mapping: Robots incrementally build a map by incorporating observed features.

• Localization: Robots estimate their pose (position and orientation) relative to the

map.

• Loop Closure: Revisited areas are detected, allowing for error correction and map

refinement.

• Optimization: Global optimization improves the map and pose estimates by mini-

mizing inconsistencies.

SLAM is used in various applications such as robotic navigation, autonomous vehicles,

augmented reality, virtual reality, and 3D mapping. It enables robots to explore and under-

stand unknown environments, performing tasks autonomously.

2.2.4 Isolated Redundant Network

An isolated redundant network, also known as a redundant network architecture or a redun-

dant network design, is a system configuration that incorporates redundancy and isolation

to enhance reliability and fault tolerance. It is commonly employed in critical infrastructure,

industrial control systems, and mission-critical applications where system failures can have

severe consequences.
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The primary objective of an isolated redundant network is to ensure continuous operation

even in the presence of failures or disruptions. This is achieved through the following key

features:

• Redundant Components: Duplicate components and alternative paths are used to

provide backup and redundancy.

• Isolation: The network is physically or logically separated from other systems to

prevent failures from spreading.

• Failover Mechanism: Automatic switching to redundant components or alternate

paths ensures uninterrupted operation in case of failures.

• Network Monitoring: Robust monitoring tools detect issues early and facilitate

proactive measures.

• Load Balancing: Traffic distribution optimizes network utilization and prevents con-

gestion.

An isolated redundant network provides increased reliability, fault tolerance, improved

performance, enhanced security, and scalability. It ensures continuous operations, mini-

mizes downtime, optimizes resource utilization, reduces the risk of unauthorized access, and

accommodates future growth.

2.2.5 RTK GPS

Real-Time Kinematic (RTK) GPS is an advanced satellite-based positioning technology that

provides highly accurate and precise location information for various applications. Unlike

standard GPS, which typically offers meter-level accuracy, RTK GPS significantly enhances

accuracy down to the centimeter or millimeter level. This level of precision is achieved

through a combination of a fixed base station and a rover receiver. The base station, placed

at a known location, continuously tracks satellite signals and calculates the errors in GPS

measurements. The rover receiver, often mounted on a moving object like a vehicle or a

drone, receives these corrected signals from the base station in real-time, allowing it to

determine its precise position with exceptional accuracy.

RTK GPS relies on a technique known as carrier-phase tracking, where it measures

the carrier phase of the GPS signals rather than just the code phase. This carrier-phase

information is highly sensitive and can provide accurate distance measurements between

the receiver and the satellites. By resolving the integer ambiguity associated with carrier-

phase measurements, RTK GPS eliminates most sources of errors, including atmospheric
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disturbances and satellite clock inaccuracies. This makes RTK GPS ideal for applications

that demand pinpoint accuracy, such as land surveying, precision agriculture, construction

site management, autonomous vehicles, and geodetic research.

RTK GPS with both the base and rover in motion is a specialized application of Real-

Time Kinematic (RTK) GPS technology, where both the reference base station and the

mobile rover are in motion simultaneously. This configuration introduces additional com-

plexities and challenges compared to traditional static or kinematic RTK setups. Here’s how

it works and some considerations for such a scenario:

In a typical RTK GPS setup, a stationary base station accurately determines its location

and calculates corrections for the satellite signals it receives. These corrections are then

transmitted to the mobile rover, which uses them to improve the accuracy of its position

calculations.

In the case of RTK GPS with moving base and rover:

• Dynamic Base Station: The base station itself is mobile and is moving alongside the

rover. Both the base and rover receivers continuously track satellite signals and ex-

change correction data, essentially creating a relative RTK system where the base’s

position is used as a reference for the rover’s position.

• Continuous Communication: A robust and low-latency communication link is essential

between the base and the rover to ensure that real-time corrections are transmitted

effectively, despite the movement of both units.

• Relative Positioning: Since both the base and rover are in motion, the RTK GPS

system calculates the relative positions between the two units in real time. This can

be useful in scenarios where the exact separation and relationship between the two

units need to be precisely known, such as in vehicle platooning, robotic swarms, or

dynamic surveying applications.

• Accuracy and Ambiguity: The dynamic nature of both units introduces challenges in

resolving the integer ambiguity associated with carrier-phase measurements. This can

affect the system’s ability to provide centimeter-level accuracy consistently, particularly

during rapid movement or changes in direction.

• Application Scenarios: RTK GPS with moving base and rover has applications in areas

like precise navigation of multiple vehicles in formation, accurate mapping of changing

landscapes, coordinated movement of autonomous drones, and more.
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• Complexity and Calibration: This setup requires careful calibration and synchroniza-

tion between the base and rover units. Any mechanical or timing discrepancies between

the two units can impact the accuracy of the relative positioning.

• Integration with Inertial Sensors: In some cases, inertial sensors (such as accelerometers

and gyroscopes) may be integrated with the RTK GPS system to improve accuracy and

robustness, especially in scenarios with rapid movements and changes in orientation.
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3. Methodology

3.1 Project Management

This project was expected to be on a scale large enough to require quick and efficient task

division, work tracking, careful planning in all time scales, etc. As a result, we decided to

build a robust project management scheme for our two-team collaboration, giving the role of

Project Manager to one of the six members. The project manager conducted all of the afore-

mentioned tasks as well all levels of integration, planning, controlling, and monitoring, etc. as

mentioned in and in accordance with Project Management Institute (PMI)’s Project

Management Body of Knowledge (PMBOK). The team member with the project

manager role assigned had drafted a Project Management Plan laying out the planning,

controlling, and monitoring schemes that were used during the development and progress of

the project. The Project Management Plan document was attached to this proposal. The

project management aspect of the project was made as official and as close to the actual in-

dustry as possible in order to provide legitimate project managing and team-work experience

holding proper weight for applications in the industry.

3.1.1 Quality Assurance

With a robust project management scheme, a robust Quality Assurance (QA) scheme was

also required. The purpose of this scheme was to estimate, enforce, and monitor the quality

of entities and modules built, having a well-defined plan for measuring and tracking the

quality. This information was used to alter the plan for the project to keep expectations

realistic as well as the workflow to keep quality acceptable. For example, a 3D map of

the campus was required for building the virtual environment for early training and testing

(see below), the workflow for which was for the most part unique and improvisational. QA

was responsible for defining the quality of the 3D mapping required, and monitored the

work efficiency, noting successes and failures, to help in the future. Since a large portion of

the project involved defining layers, modules, their abstraction, their interfacing, etc., their

quality was defined as how flexible they were with their abstraction, how universal their

inputs and outputs were, etc. All these definitions were managed by QA.

QA was integrated with the project management activities, and the role of Quality As-

surance Manager was given to one of the six team members. This role (not necessarily the

assignment) has been separated from the project manager role to stress its importance and
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build a separate abstracted scheme. Common practice is to have a dedicated team for QA,

however, since our team is small, this was limited to one of the roles of a single member, with

flexible coordination with other members for any problem solving and information gathering

involved.

3.2 Scale of the Project

It was necessary to define our project assumptions. We created a go-cart sized (around 78”

long, 25” tall, and 52” wide) vehicle which is controlled by the use of Brushless Hub motors

like those found on electric scooters. The rear of the vehicle held two of these motors, and

the front wheel was coupled for steering action. The steering implemented a drive-by-wire

concept utilizing a system to decouple the steering from the user. Battery Packs were stored

in the vehicle. The vehicle also had an infotainment system to provide real-time feedback of

what the system was doing.

When we were behind a vehicle, we had a perspective of the environment around the

vehicle and could adapt to changes within the environment instantly. This is difficult to

achieve in an autonomous system and all of the system and environment perception needed

to be calculated and handled by the system itself. The system was able to counteract the

changes instantly by itself. Vehicle design took a lot of research and work. The difficult

aspect before any mass production was creating the vehicle itself. We were not looking for

mass producing this vehicle and neither did we want to spend time on any aesthetics of the

system. So taking that out of the equation, still the main aspect of any vehicle was the

chassis. The chassis needed to be designed from scratch which added about 1 month of work

hours for a team of six like ours.

As listing our working domain, we had to complete tasks from Printed Circuit Boards

(PCB) designing, circuit layout, sensor placement, communication design, protocol interface,

embedded firmware development, real-time operating systems, linux socketCAN, CAN pro-

tocols, system errors and exceptions, Software Development Kit (SDK) design or Application

Protocol Interface (API) design, mapping, slam, mechanical gears and tools, welding, CAD,

simulations, machine learning, multi-layer model deployment and much more to be expected.

It was sure that this was a very engaging project and would populate most of our effort in

it.

The system design required a thorough introduction to how each component would play

a role in the system. Since this was a node-based isolated system, each node was a system

by itself. This contributed to a lot of work for the team but brought a trade-off. The system

was modular and could be replaced at node if any error occurred. Also about the system-

level exception and reporting protocol that needed to be defined. For a team like ours, we
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estimated this alone could take around 2-3 months of active work. And we were not even in

the tuning part of the system yet, as each node needed to be tuned to the sensor, motors,

or transducers they were connected to. This alone could take 2 months of active work for

optimizing the system.

Now the system can be controlled but we needed a way to send command to the system

and show its status on a dashboard. Some UI design, control tweaking would take some more

amount of our time. After this was the main part of the system, making it autonomous and

providing an abstracting SDK to build on top of our hardware or creating an API to which

the higher level software could connect and send commands. We needed to expose all of

our real-time data to the upper layers of Machine Learning models. This was the part to

combine the work of the Machine Learning part of the system. So both of the team needed

to run in parallel to make sure that they achieved the goals on time and none of them acted

as throttling each others job. The collaboration alone could take 3 months to complete.

Therefore, the hardware team could expect active work of around 8 months for the system

to be complete. Of course, many tasks could run in parallel and multiple tasks could make

it easy for other tasks to be complete.

3.3 Autonomous Region and Environment

The world for the vehicle is where it is able to provide its services. Mapping a large area

requires a lot of time and effort. For this vehicle, we have chosen the world to be Pulchowk

Campus CIT block. We utilize all the roads present in there, where the vehicle is free to roam

about provided that instructions are given to it. A mapping needs to be done of Pulchowk

Campus to provide a digital environment to the vehicle.

3.4 Absolute and Relative Positioning of the Device

We need to keep track of where the vehicle is so that we can direct the vehicle towards

where it needs to go. For this, we need to know the position of the vehicle. We are using

a GPS-based system with Simultaneous Localization and Mapping (SLAM) to pinpoint its

exact location. The directive constraint is provided via an Inertial Measurement Unit (IMU)

that is on the device.

3.5 Team and Work Division

We are a team of three individuals with a diverse set of skills. The work was divided on the

basis of our individual skill sets. With this classification, we divided our work under multiple

categories so that it is easy to evaluate each work.

1. Mechanical Work
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One of our team members has some experience in mechanical work and with the assisted

tools in the Pulchowk Robotics Club, all of our mechanical work was completed under

the supervision of that team member. The mechanical parts include the frame and all

the actuators that we need to build on our own.

2. Electronics and Embedded Systems

We are students of this very domain and are quite familiar with the system we need

to develop, so this work was divided equally if not based on the amount of work each

team member has.

3. Programming Based Work

This is similar to that of the before as it was divided among all of the members.

4. Protocol and Contract Defining Work This lays a foundation on how the system

should collaborate, so all need to be there to lay the groundwork for this work.

5. CAD Based Work

One of our members has previous experience in CAD-based work using Fusion 360,

Solid Works, and Free Cad and another member has experience in Blender. So the

CAD-based work was divided among these individuals.

6. PCB Design and Fabrication Based Work

One of our members has an excellent record of PCB design during their time in Pul-

chowk Campus, so this work was issued to them.

3.5.1 Collaboration Team

The hardware and software parts of the system are vague by themselves and require a lot

of work in each aspect. Two teams are present which represent each of the hardware and

software parts of the system. Here hardware refers to the controllable system design and

software refers to the controlling system design. Both teams are not only to complete each

of their tasks but collaborate throughout the process about each and every decision that is

to be made throughout the development, as every single change was expected to affect both

teams. So a collaborative effort is to be made between the teams defining what they are

doing and pitching in the necessary developments to the other team so that they can bring

those changes in their domain. Both teams worked independently with a timely update from

each side. The integration part of the system started as early as the project initiation and

was active throughout the development. This is why we chose a project management-based

approach so that each system is documented and each member is aware of what is going on

in the system.
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3.6 Equipment, Tools and Devices

These are the devices that we used in the system or was used to design the system.

• 3D Printer One of our team members has access to a 3D Printer, so all of our CAD-

based work was brought to life using this machine. This enables us to create parts that

are unimaginable with handwork.

Figure 3.1: A bed slinger 3D printer

• Micro controllerWe have a range of micro-controllers from STM32 like F4,F3,M0,H7

series. With a total of 10 micro-controllers, we have the ability to create isolated

redundant systems.
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(a) Master Controller (b) Node Controller A

(c) Node Controller B

Figure 3.2: Micro-controllers

• CAN Transceivers These form the physical layer of our CAN Bus protocol.

Figure 3.3: CAN Transceiver
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• Stereo-Vision Camera A stereo-vision camera works on the basis of disparity and

triangulation to produce depth feedback from the environment. We are utilizing the

depth sensor to provide feedback to the system about the path, roadways, and obstacles

that are present in front of the vehicle.

(a) Camera (b) StereoVision of Camera

• Main Board ( Logic Board ) A real-time mapping has been provided to the vehicle

using the sensor in the vehicle. There is a requirement to process multiple camera

feeds and data from the sensors in the vehicle to provide feedback to the vehicle.

These enormous processing requires a lot of calculation and needs to process multiple

ML models. With this in mind, we have got a hold of a board that is capable of

processing this information in real time. The board is based on ARM architecture and

is one of the fastest Single Board Computer (SBC) available till date. We use linux

with SocketCAN to communicate with our low-level CAN BUS. This has a contract

with the CAN Master Controller and can provide instruction to the vehicle.
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Figure 3.4: Main System Board
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4. Experimental Setup

4.1 Node Level Isolated System

Each node of the CAN bus, such as the acceleration node or braking node, is carefully

isolated from one another to ensure optimal performance. This isolation is achieved by

assigning each node its own micro-controller, allowing operations specific to that node to

be carried out independently. By operating in isolation, the functions of one node do not

interfere with the operations of other nodes, thereby enhancing the speed and efficiency of

the entire system. Each node is capable of receiving message packets from other nodes or

the master controller, and based on the content of these messages, it performs the necessary

tasks. The isolation of nodes not only contributes to reliable and robust communication

but also necessitates the use of a custom CAN protocol. Designing this custom message

communication protocol involves the meticulous debugging of packets using tools such as

oscilloscopes and signal analyzers, ensuring the smooth and accurate transmission of data

across the CAN bus.

4.2 Communication Protocol Design

Designing a custom CAN bus communication protocol requires careful consideration and

adherence to certain principles. Here are some steps to design a custom CAN bus protocol:

1. Define Communication Requirements: We start by clearly defining the commu-

nication requirements for our specific application. We identify the types of data to be

transmitted, their priorities, message formats, and any specific timing constraints. We

consider the desired network topology and the number of devices that will be connected

to the bus.

2. Identify Message Structure: We determine the structure of the messages that will

be transmitted over the bus. This includes the identification of message IDs, data fields,

and any additional control or status information that needs to be included. Decide on

the data formats, such as binary, hexadecimal, or ASCII.

3. Define Message Arbitration: CAN bus uses a priority-based message arbitration

scheme to determine which message gets transmitted when multiple devices attempt to

send data simultaneously. We then define our custom arbitration scheme, considering
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factors such as message priorities, message IDs, and the algorithm for resolving bus

contention.

4. Error Handling and Recovery: We plan how your custom protocol will handle

errors and recover from them. We define the error detection and error handling mech-

anisms, such as checksums, CRCs (Cyclic Redundancy Checks), and acknowledgments.

Then, we determine the actions to be taken when errors occur, such as re-transmission

or error notification.

5. Frame and Bit Timing: We then specify the frame format and bit timing parameters

for your custom protocol. The length of the data frame, the number of bits for the

message ID, and any additional fields required are determined. Then, the bit timing

parameters, such as bit rate, sample point, and synchronization requirements are also

determined.

6. Protocol Implementation: We then implement our custom CAN bus protocol in

software or hardware, depending on the needs. Then the necessary firmware or drivers

to handle the protocol on the transmitting and receiving devices are developed. We

then test the implementation thoroughly to ensure its correctness and compliance with

the desired specifications.

7. Verification and Validation: We need to perform rigorous testing and validation of

our custom CAN bus protocol. we have to test it under different scenarios, including

normal operation, high-load conditions, and error conditions. we need to verify its

performance, reliability, and adherence to the defined specifications.

4.3 PID Tuning and System Calibration

The system may have errors, you may not achieve the required output in the system due to

mechanical deformities and environmental factors. This variations in the required output of

the system and actual output of the system can be minimized and system can be calibrated

using the technique called PID(Proportional, Integration, Derivative) tuning. PID tuning

uses PID controller which has three constants((Kp, Ki and Kd) that can be manipulated.

PID controller is one of the most popular closed-loop controllers which is used in the

automation industry. By fine-tuning 3 constants, you are able to achieve a system which is

almost free from any errors. [5]

In a PID controller, we calculate an error e(t) as the difference between the desired set-

point and the current value(process variable) and pass it as a feedback signal. The error e(t)

is then corrected based on the proportional(p),integral(i) and derivative(d) terms.
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Figure 4.1: PID Controller

We’ll use a genetic algorithm to find the 3 constant values(Kp, Ki and Kd).

As the name implies, the PID controller provides three separate actions on the error signal

to produce the controller output, proportional, integral, and derivative. The proportional

action produces an output proportional to the error signal y(t) = Kp ∗ e(t). Thus, no

proportional action will result when the plant output is equal to the set point, since the

error is zero. As the proportional gain Kp is increased the controller will produce a larger

signal in response to an error. This amplification of the error signal will result in a faster

response to errors, but may also add instability. These effects are quantified by the response

having a shorter rise time, and an increase in the percent overshoot. Conversely, reducing

the proportional gain will reduce overshoot but will increase the steady state error.

The derivative action provides a control signal proportional to the time rate of change of

the error signal. y(t) = Kd ∗ de(t)/dt. The derivative term provides an anticipatory element

to the controller, providing larger controller response to rapidly changing error signals, and

smaller response to slower changes. This permits a faster system transient response without

increasing the percent overshoot. The derivative action alone has little effect on the steady

state behavior of the system. It cannot remove a fixed error (constant steady state error)

since the derivative of a constant is zero. Therefore, the derivative element of the PID

controller would produce zero output to a non-changing error.

The integral action produces an output proportional to the accumulated (integral) of

the error signal, allowing the controller to zero the steady state error between setpoint and

system output. y(t) = ki
∫
e(t). From a control system theory perspective the integrator

term improves the steady state performance because it increases the “system type” by one

by adding a zero at the origin. Intuitively, the integral element insures that even small errors
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will eventually amass to produce significant controller output. The combination of the three

actions is summarized as

y(t) = Kp ∗ e(t) +Kd ∗ de(t)/dt+ ki

∫
e(t) (4.1)

In equation 4.1, y(t) is the system output, e(t) is the error signal, Kp, Ki,and Kd are the

proportional, integral, and derivative gain constants. The selection of the three constants

Kp, Ki,and Kd, to achieve a specific response is known as tuning. Manual tuning consists of

adjusting the three gain factors in a systematic manner using multiple trials.

After obtaining the mathematical model of our system, we can use MATLAB software

to obtain the best possible value of Kp, Ki,and Kd. Using these values our system shall be

calibrated.

4.4 Exposed System Parameter For Varied System Re-

sponse

Our system offers the flexibility to tune various parameters of the vehicles according to

specific preferences and requirements. Parameters such as brake bias, acceleration gain,

battery current limit, throttle gain, speed limit, acceleration curve, motor sync parameters,

steering motor gain, steering motor curve, and steering motor limits can all be adjusted.

All these parameters are exposed and can be updated via the controller with a set of

administrative commands in the upper layer of the system in real-time, allowing for adaptive

tuning. which means that the lower layer of the system can have a simpler design, as the

complex calculations and feedback can be handled by the upper layer. By providing a

mechanism to update these parameters, the system becomes more manageable, eliminating

the need for firmware modifications on individual nodes. This indeed means calibration of

the system is essential before use but we can store these parameters permanently in the

memory of the main controller so when it wakes up it updates all of these parameters to a

default state.

4.5 RC Based Initial Design

Our end system will pose different challenges when it comes to modifications, as each change

becomes increasingly expensive as we scale up. We do not have the option to completely

abandon the current idea or design if it doesn’t work out, especially since we are working

on the end product. This situation carries a huge amount of risk. Therefore, to adopt a

more manageable approach is followed. We have decided to create a small-scale 1:1 Remote

controlled vehicle which will be representative of the final product. This approach allows us

the flexibility to make changes as we progress in our project. While it may not be possible
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to achieve a perfect replica of the end system, this strategy will effectively eliminates most

of the design issues that arise in the early stages, thus preventing wastage of the time and

resources

4.6 Mechanical Based System Design

In order to achieve our desired outcome, we must carefully design the individual mechanical

components that will facilitate the translation of motion from various actuators or motors

to trigger the mechanical system. Each aspect of the system will be given individually

designed ensuring that we establish a clear understanding of how the electrical feedback can

be effectively translated into mechanical feedback.
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5. System Design

5.1 How does the system work?

The system works with the combination of different nodes and controller that can be divided

into functional layers. Various data packets, messages, control signals are passed between

the different layers for proper functioning of the system. The different layers are:

5.1.1 Layer 1: Actuator Sensor Transducer Layer

This layer acts as a physical foundation to connect the mechanical system of the vehicle

to the electronically controlled systems. A sensor acts in reporting the current state of

the mechanical system, a transducer acts in bidirectional communication to the mechanical

parts, an actuator acts in helping the system achieve a given command.

5.1.2 Layer 2: Node Control Layer

A node represents an isolated system that can react on its own in the universe that is the

vehicle. A node contains a range of sensors, actuator or transducer. A node consists of the

following components, micro-controller(CPU), CAN controller, and CAN transceiver that is

able to read the current status of the system and report its information to the higher layer.

Making an independent node allows the system to be robust to include multiple nodes if

required as a redundant system. A node is also able to receive commands from the upper

layer to perform a given set of tasks. A ML network is initiated within the micro-controller

which is able to identify anomalies of the system or update its parameter on the fly. A simple

example would be correcting the power level fed to the motor by the battery management

system in a range of voltage fluctuation as per the road conditions or the type of the road

terrain.

5.1.3 Layer 3: CAN Layer

A Controller Area Network is what we are using for the communication within the nodes. A

CAN Bus is a multi-master bus that runs parallel to each other in real time. The Bus is shared

and all the nodes are not able to send data at the same time to other nodes. The Shared Bus

allows the system to communicate with only two wires throughout the system.CAN itself

has multiple layers which define things like cable type, electrical signal, node requirement,

cable impedance e.t.c. Multiple types of CAN Bus are available, the one we implemented is a
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High Speed CAN which has a bandwidth of 1 Mbits/s.The CAN Bus as two layers. They are:

• Physical Layer of CAN: CAN layer offers two wire communication, the wires

are twisted and are a differential pair represented as CAN H (can high) and CAN L

(can low). Termination resistors are present at each end which matches the nominal

impedance of the wire.

• Controller Layer of CAN: A controller layer is responsible for the transmission and

reception of messages between nodes. It performs activities like arbitration of messages

and the error detection and handling.

5.1.4 Layer 4: Data Distribution Layer

The microcontroller acquires data from multiple sensors, which might be essential for other

interconnected systems. To seamlessly distribute the information from these sensors and data

from other device such as cameras and gps. We have opted for the Robotics Operating System

(ROS). ROS functions on the principle of message passing by publishing and subscribing

between nodes, thereby transmitting and distribuiting data more effectively.

5.1.5 Layer 5: System Control and Master Initiator Layer

Node Status are read by this control layer, it can control the other nodes in the network,

handle system exceptions, reset the system to the default state, handle system errors and

compensate for the errors, and translate the user interaction to the system. The system runs

a higher level ML network which is able to identify the current system status and adjust

to various environmental factors in real time. This is the controller that provides all the

information on how the nodes should react.

5.1.6 Layer 6: Environment Data Collection Layer

Multiple cameras are employed within the system to understand the environment the system

is in. The cameras we are using are stereoscopic cameras which understands the depth of

the objects around it. Also the lower layer sensor information from the depth sensors are

accessed and transformed. A SLAM based environment is employed to locate the system.

The system also employs a GPS for real time location mapping.

5.1.7 Layer 7: Computing and Processing Layer

This layers runs application which takes all the feedback from the layers below and provides

a general procedure on what the system need to do next.
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5.2 Nodes of the Vehicle

Humans can take over the control of the vehicle whenever required, so every node of the

vehicle can take inputs from both humans and AI. Both input mechanisms are different and

separated from one another. Every node shall be designed in such a way that switching

between human control and AI control can be achieved by clicking a button.

Following are the nodes of the vehicle:

5.2.1 Master Controller

Master Controller is the master of the CAN Bus system, attached with all the nodes, it

initiates the communication, sends the message packets for operations in nodes and receive

the information regarding state, operation and health of the node. It takes input from the

AI computation, and transducers that generates signals on the basis of human input.

Figure 5.1: Master Controller of CAN BUS

5.2.2 Acceleration Node

This node is responsible for acceleration and de-acceleration of the vehicle. it operates

when the master controller sends the message packets requesting for acceleration or de-

acceleration of the vehicle. When it receives the signal from the master controller, it then

sends signals(PWM signal) to the motor controller. This node sends the message packets to

the master controller which includes the acceleration value of the vehicle and other operations

of node.
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Figure 5.2: Acceleration Node connected to CAN Bus

5.2.3 Brake Node

This node is responsible for applying the brake of the vehicle. it operates when the master

controller sends the message packets requesting to apply brake or release the brake. When

it receives the signal from the master controller, it then sends signal to the actuator which

applies physical brake. This node sends the feedback message packets to the master controller

which includes the amount of brake pressed and other health of the node. When the vehicle

is turned off, the brake is applied.

Figure 5.3: Brake Node connected to CAN Bus

5.2.4 Battery Management Sytem(BMS) Node

This node is responsible for charging and discharging of the battery packs of the vehicle.

During charging of the vehicle this nodes balances the charge among the each cell of the packs

avoiding any hazardous situation. It discharges the battery packs according to the need as

requested by the master controller. This node sends the feedback message packets which

includes the State of Health(SOH), State of Current(SOC) and State of Temperature(SOT)

of the cells to the master controller.
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Figure 5.4: BMS Node connected to CAN Bus
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6. Results and Discussion

The current results of our project focus on the complete integration of our vehicle with the

sensors, battery system, motor drivers connected as CAN nodes and operable from a dis-

play unit connected to the RockPi. For our battery system, we have rewired the existing 60V

lithium ion battery provided to us by Niu as per our needs.

The integration of an RTK GPS system has also been completed, with the base station

mounted at the Robotics Club and configured to broadcast correction data from multiple

satellites.

We’ve diligently worked on establishing a robust vehicle communication network. Node-

level testing with CAN transceivers, alongside the development of CAN wiring harnesses and

message filtering, has been completed. Furthermore, inter-node communication has been

successfully tested through packet transmission within the system. Firmware development

at the node level is complete, with a focus on GUI-based display feedback, node addressing,

and API layer system design.
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In parallel, efforts have been directed towards vehicle simulation and pre-assembly tasks,

incorporating ML-based feedback control, chassis design refinement, wiring and cable man-

agement, early system tuning, Matlab simulations for parameter optimization, and the de-

velopment of a GUI for system command input. Through these coordinated efforts, our

project continues to advance towards its goals with a seamless flow of tasks and progress.

Our embedded system design has already undergone testing, focusing on micro-ros and

ROS2 integration for data distribution. Our system requires field testing, which has been

not possible yet due to the delay in delivery of the front motor controller. This has conse-

quently delayed the design of our steering system. This will be followed by human-controlled

vehicle operation. These include implementing SLAM-based localization around Pulchowk

to ensure precise positioning, setting PID constraints for individual components to opti-

mize performance, and conducting thorough command-based movement testing to validate

functionality and responsiveness.

Different systems in the vehicles and corresponding results from those systems are dis-

cussed below.
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6.1 CAN Layer

In CAN physical we tested the use of multiple wire available to us, our findings led us to

using a 24AWG single core aluminium wire throughout the length of the car. We tested

communication of devices on the bus and this offered no packet loss for 2 meter in wire

length.

Our plan was to isolate each node as much as possible, so we have settled on this CAN

bus layout. This provides us good robustness in the vehicle. There is always a trade-off for

redundancy and cost. We cannot duplicate each node but can confirm the vehicle will not

run down in failure of a single node in the bus. The overview of the CAN bus is:

Figure 6.1: CAN bus overview

33



6.2 Sensor Layer

Our system is not an end-to-end solution but a platform for other applications integrate with

a robust base such as ours. We have integrated multiple sensors in our design for navigation

as well as obstacle detection. The different sensors used in the system and the outputs

obtained from them is mentioned below.

6.2.1 LiDAR

The laser scan output of a LiDAR (Light Detection and Ranging) system typically consists

of a collection of data points representing distances measured by the LiDAR sensor. Each

data point, often referred to as a ”point cloud,” includes information about the distance

from the LiDAR sensor to a particular object or surface in its field of view. Some of the

important data in the point cloud are:

1. Coordinates: Each data point in the point cloud is represented by its spatial coordinates

(x, y, z), indicating its position relative to the LiDAR sensor’s reference frame.

2. Distance: The distance measured by the LiDAR sensor to the object or surface cor-

responding to each data point. This distance information is typically represented in

meters or another unit of length.

3. Intensity: Some LiDAR systems also provide information about the intensity of the

returned laser pulse for each data point. This intensity value can be used to infer

properties of the reflecting surface, such as its reflectivity or material properties.

4. Scan Angle: The angle at which the laser beam was emitted and received by the LiDAR

sensor. This information helps in understanding the orientation of the detected objects

relative to the LiDAR sensor.

6.2.2 GPS

The RTK (Real Time Kinematics) GPS we used provided us the latitude, longitude and

altitude of any point around the campus with few centimeter level precision. It used the

output of both base station and mobile GPS system to calculate the precise coordinate of

any point on the campus.

6.2.3 Motor Feedback

The Hall Sensor is used to track the position and calculate the speed of the Hub Motors. The

three channel Hall Sensor tracks the 54 Pole pairs of the Hub motors and provided us with
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the feedback with which the motor driver calculated the velocity and tracked the position of

the rotating motor.

6.2.4 Depth Camera

Like most depth cameras, the OAK-D depth camera that we are using provides a depth

map, which is a 2D array where each pixel corresponds to a distance value from the camera

to the corresponding point in the scene.

6.3 Motor Control and Tuning

The Hub motor we used had no available datasheet so it had to be manually tuned. With

the available interface of Odrive Motor driver, we performed following steps.

• Set vel integrator gain gain to 0

• Make sure you have a stable system. If it is not, decrease all gains until you have one.

• Increase vel gain by around 30

• Back down vel gain to 50

• Increase pos gain by around 30

• Back down pos gain until you do not have overshoot anymore.

• The integrator can be set to 0.5∗ bandwidth∗ vel gain, where bandwidth is the overall

resulting tracking bandwidth of your system. Say your tuning made it track commands

with a settling time of 100ms (the time from when the setpoint changes to when the

system arrives at the new setpoint); this means the bandwidth was 1/100ms = 100Hz.

In this case you should set vel integrator gain = 0.5 ∗ 10∗ < vel gain >

The end value for our motors were.

vel gain=0.52

vel integrator gain=0.31

6.4 Data Distribution Layer - ROS2

The default fast-DDS implementation in ROS 2 ensures interoperability, reliability, and

performance.

6.4.1 Software Description of Vehicle

To visualize our vehicle in the simulation environment we used the URDF format and load

it into the Rviz and Gazebo. URDF (Unified Robot Description Format) is an XML-based

35



file format used in ROS (Robot Operating System) to describe the physical properties and

structure of a robot. URDF files define the robot’s kinematics, dynamics, visual appearance,

and collision properties, among other aspects. The final design and view of the vehicle in

simulation environment is

Figure 6.2: Software Description of the Vehicle

6.5 ROS Nodes

The nodes in the ROS system are:

• joint state controller: This node publishes joint states, such as positions, velocities,

and efforts, to the ROS graph. It typically subscribes to feedback from the robot’s

sensors (e.g., encoders) and publishes joint state information that can be used by other

nodes for various purposes, such as visualization or higher-level control.

• cmd vel:cmd vel is used to send velocity commands to a robot’s base. The message

published to the /cmd vel topic are of type geometry msgs/Twist. This message type

contains two main components: linear velocity (linear.x, linear.y, linear.z) and angular

velocity (angular.x, angular.y, angular.z). These components define the desired linear

and angular velocity of the robot.
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6.6 ROS Topics

ROS messages are transmitted through ROS Topics between the different nodes. The ROS

topics in our system are:

• cmd vel: This topic is used to send velocity commands to control the robot’s motion.

It typically publishes messages of type geometry msgs/Twist, specifying linear and

angular velocities.

• odom: The odometry topic provides estimated pose and velocity information about the

robot’s motion. It typically publishes messages of type nav msgs/Odometry, containing

information such as position, orientation, linear velocity, and angular velocity.

• joint states: This topic provides information about the robot’s joint states, such as

positions and velocities of its wheels or other movable parts. It typically publishes

messages of type sensor msgs/JointState.

• scan or lidar scan: If the robot is equipped with a lidar sensor for distance measure-

ment, it may publish laser scan data on this topic. It typically publishes messages of

type sensor msgs/LaserScan, containing distance measurements at various angles.

• tf: The tf topic publishes the transform tree, which represents the spatial relationship

between different coordinate frames in the robot’s environment. This is essential for

coordinating sensor data and robot motion in a consistent reference frame.

• battery state: If the robot has a battery or power supply, it may publish information

about its state, such as voltage, current, and remaining capacity. This data is typically

published on a topic like sensor msgs/BatteryState.

• diagnostics: This topic may be used to publish diagnostic information about the robot’s

health and status. It can include data such as error messages, warnings, or other

diagnostic information to facilitate troubleshooting and maintenance.
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